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Disinfection By-Product (DBP) Mixtures with Bootstrap 
Hypothesis Test Procedures

Bootstrap Hypothesis Tests of Mixture SimilarityPaul I. Feder1, Zhenxu J. Ma1, Richard J. Bull2, Linda K. Teuschler3, 
and Glenn Rice3

1Battelle, Statistics and Information Analysis, Columbus, Ohio, 2MoBull Consulting, Richland, 
Washington, and 3U.S. Environmental Protection Agency, Cincinnati, Ohio, USA

In chemical mixtures risk assessment, the use of dose-response
data developed for one mixture to estimate risk posed by a second
mixture depends on whether the two mixtures are sufficiently
similar. While evaluations of similarity may be made using quali-
tative judgments, this article uses nonparametric statistical meth-
ods based on the “bootstrap” resampling technique to address the
question of similarity among mixtures of chemical disinfectant by-
products (DBP) in drinking water. The bootstrap resampling
technique is a general-purpose, computer-intensive approach to
statistical inference that substitutes empirical sampling for theo-
retically based parametric mathematical modeling. Nonparametric,
bootstrap-based inference involves fewer assumptions than para-
metric normal theory based inference. The bootstrap procedure is
appropriate, at least in an asymptotic sense, whether or not the
parametric, distributional assumptions hold, even approximately.
The statistical analysis procedures in this article are initially illus-
trated with data from 5 water treatment plants (Schenck et al.,
2009), and then extended using data developed from a study of 35
drinking-water utilities (U.S. EPA/AMWA, 1989), which permits
inclusion of a greater number of water constituents and increased
structure in the statistical models.

Many contaminants occur in the environment as complex
mixtures, which are generally comprised of many, perhaps
hundreds, of chemical components. The proportions of these
components vary depending on how the mixture was formed
and the fate of the mixture in the environment. Furthermore, a
portion of the complex mixture may be poorly characterized
chemically, with some of its components not known.

The U.S. Environmental Protection Agency (U.S. EPA) issued
guidance documents (Guidelines for the Health Risk Assessment
of Complex Mixtures, hereafter the Guidelines [U.S. EPA, 1986],
Supplementary Guidance for Conducting Health Risk Assessment
of Complex Mixtures [U.S. EPA, 2000]) that discuss concepts and
suggested procedures for the assessment of health risks associated
with exposures to multiple chemicals, including complex mix-
tures. The U.S. EPA (2000) defines a complex mixture as a mix-
ture containing many, perhaps hundreds of, components. The
chemical composition may vary over time or with different condi-
tions under which the mixture is produced. Complex mixture
components may be generated simultaneously as by-products
from a single source or process, such as the disinfection of drink-
ing water at water treatment plants, intentionally produced as a
commercial product, or may coexist because their chemical prop-
erties result in their co-occurrence in an environmental medium.

The Guidelines (U.S. EPA, 1986) state that the preferred situa-
tion for assessing health risks associated with exposure to complex
mixtures is when compositional and toxicity data are directly
available on the mixture of concern. Procedures can then be
adopted that are similar to those used to evaluate risks associated
with single compounds. However this preferred situation does not
always occur. To deal with such situations, the Guidelines state:

If no data are available on the mixture of concern, but health effects
data are available on a similar mixture . . . a decision must be made
whether the mixture on which health effects are available is “suffi-
ciently” similar to the mixture of concern to permit a risk assessment .
. . . In determining reasonable similarity, consideration should be given
to any information on the components that differ . . . between the mix-
ture on which health effects are available and the mixture of concern.

The views expressed in this article are those of the individual
authors and do not necessarily reflect the views and policies of the
U.S. Environmental Protection Agency (EPA). Those sections
prepared by U.S. EPA scientists have been reviewed in accordance
with U.S. EPA peer and administrative review policies and approved
for presentation and publication. Mention of trade names or
commercial products does not constitute endorsement or
recommendations for use.

The authors acknowledge and appreciate the many helpful review
comments and suggestions of Richard C. Hertzberg, Ph. (Emory
University), and David Farrar, PhD (U.S. EPA/ORD/NCEA). These
comments greatly improved this article.

Address correspondence to Paul I. Feder, Battelle, Statistics and
Information Analysis, 505 King Avenue, Columbus, OH 43201-2693,
USA. E-mail: feder@battelle.org
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BOOTSTRAP HYPOTHESIS TESTS OF MIXTURE SIMILARITY 495

Bull et al. (2009a, 2009b) discuss in detail the various classes
of disinfection by-products (DBP) that occur in drinking water
and are associated with various adverse health consequences.
Bull et al. (2009a, 2009b) characterize input factors to the water
treatment process that affect the formation of DBP, the variation
in the output DBP associated with these factors, and some of
the toxicological implications of this variation.

Rice et al. (2009) present an overview of proposed methods
for assessing similarity of complex mixtures. Rice et al. (2008)
discuss methods based on whole mixtures and methods based
on individual mixture component data. They state that if whole-
mixtures data are available then whole-mixtures methods are
preferred because they are subject to less uncertainty. The sta-
tistical methods discussed in this article are based on whole-
mixtures data.

Feder et al. (2009) discuss statistical considerations in the
comparison of similar mixtures. Multivariate statistical procedures
are applied to determine whether individual water supplies exhibit
statistically significant variation from a group of water supplies
that are considered to be similar. Principal components analysis
is applied as a dimensionality reduction and data visualization
technique. The statistical procedures are illustrated with examples
based on the Schenck et al. (2009) data.

This article extends Feder et al. (2009) in several directions:

1. The statistical methods (Feder et al., 2009) are based on normal
theory multivariate analysis of variance. This article presents
nonparametric alternatives to the normal theory analysis
procedures based on the nonparametric “bootstrap” tech-
nique (Westfall & Young, 1993; Efron & Tibshirani, 1993).
The bootstrap resampling technique is a general-purpose,
computer-intensive approach to statistical inference that substi-
tutes empirical sampling for theoretically based parametric
mathematical modeling. Nonparametric, bootstrap-based
inference involves fewer assumptions than parametric nor-
mal theory-based inference. It produces valid results, at
least in an asymptotic sense, whether or not the parametric
distributional assumptions hold, even approximately. The
nonparametric procedures are less dependent on distributional
assumptions and apply to a wide variety of inference situations.
The bootstrap counterpart to normal theory multivariate anal-
ysis of variance is discussed in detail and is illustrated by
example.

2. The statistical analysis procedures are illustrated with the
Schenck et al. (2009) study data as well as with data based
on the 35-utility study, conducted by the U.S. Environmen-
tal Protection Agency and the Association of Metropolitan
Water Districts (U.S. EPA/AMWA, 1989). The multivariate
statistical analysis procedures in Feder et al. (2009) are
extended to the 35-utility data set. Multivariate analysis of
variance and its bootstrap counterparts are applied to assess
similarity of treated water DBP chemical components among
alternative water sources, water treatments, seasons, and
utilities.

The remainder of the article discusses and illustrates the boot-
strap technique and its application to assessments of similarity
among water sources.

It should be noted, as discussed in Feder et al. (2009), that
although most of the water characteristics used to compare treat-
ments and water samples in the examples in this article are
chemical characteristics, the similarity of mixtures with respect to
toxicological effects is of principal interest from a public health
perspective. Thus, the similarity of chemical characteristics among
mixtures is of interest primarily to the extent that the similarity
of chemical characteristics implies the similarity of toxicological
characteristics.

APPLICATION OF BOOTSTRAP ANALYSIS 
TO THE ASSESSMENT OF SIMILARITY OF DBPs 
IN ALTERNATIVE WATER SUPPLIES

The bootstrap sampling method (Efron & Tibshirani, 1993;
Westfall & Young, 1993) is a general, flexible, computationally
intensive approach to inference that is relatively insensitive to
sampling assumptions concerning underlying distributions. Com-
parisons among classes of water supplies based on normal theory
multivariate analysis of variance (Feder et al., 2009) are reconsid-
ered based on the bootstrap technique.

The inference procedures in Feder et al. (2009) are illustrated
with the Schenck et al. (2009) study data. These data originate
from five treatment plants, each of which was monitored at a
single time point between 1995 and 1998. The inference proce-
dures are illustrated based on a seven-dimensional vector of
output water chemical composition:

• Total organic carbon (TOC) (mg/L).
• Total organic halogens (TOX) (μg/L).
• Mutagenic activity (revertants/L equivalent).
• Total trihalomethanes (TTHM) (μg/L).
• HAA6 (six haloacetic acids1) (μg/L).
• Percent brominated TTHM.
• Percent brominated HAA6.

These “summary metrics” are important to characterizing
the complex mixture as a whole, as opposed to only evaluating
a defined set of chemical components (e.g., only looking for
similar levels of individual components in the mixture such as
chloroform or dichloroacetic acid). These summary metrics
account for unknown chemicals in the complex mixture, com-
positional changes, and possible interactions among chemicals.
These seven output water characteristics were recorded at each
treatment plant for the finished water at the plant and for the
distribution system water at two locations away from the plant.
Two-sample and matched-pairs analysis examples are illustrated
with this data set.

1The six haloacetic acids denoted as HAA6 are chloroacetic acid,
bromoacetic acid, dichloroacetic acid, trichloroacetic acid,
bromochloroacetic acid, and dibromoacetic acid.
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496 P. I. FEDER ET AL.

TWO-SAMPLE ANALYSIS

Normal Theory Test
For an initial illustration with a relatively simple example,

the five treatment plants are treated as if they are replicates of a
single process (i.e., plant identification is ignored). The pur-
pose of the analysis is to determine whether the distribution
water samples are sufficiently similar to the finished water
samples. Let NX denote the number of finished water samples,
NY denote the number of distribution water samples, and p
denote the dimensionality of the response vectors. In this
example, NX = 5, NY = 10, and p = 7. Denote the response vec-
tors for the finished water by X1, X2,. . .,X5 and the response
vectors for the distribution water by Y1, Y2,. . .,Y10. It is
assumed that the Xi terms and the Yi terms are independent with
mean and covariance X ∼ (mX, SX); Y ∼ (mY, SY). Since there
are just NX = 5 finished water samples, there are not sufficient
replicates to estimate separate covariances within categories
with a seven-dimensional response vector or to evaluate
the assumption of variance homogeneity. It is assumed that
SX = SY º S.

The sample means and the pooled sample covariance matrix
are estimated as

where S has n ≡ [(NX – 1) + (NY – 1)] degrees of freedom.
The hypothesis to be tested is

versus

The normal theory test procedure is based on Hotelling’s T2

statistic (Morrison, 1976, p. 128ff).2

Under the null hypothesis, the distribution of T0
2 is propor-

tional to an F distribution, namely,

Nonparametric Bootstrap Test
To carry out the nonparametric bootstrap resampling counter-

part to the normal theory procedure, a random sample of multi-
variate responses that reflects H0 is drawn from an approximation
to the underlying distribution under the null hypothesis: FX = FY
≡ F (where FX and FY denote the cumulative distribution func-
tions of the vectors X and Y, respectively). An empirical reference
distribution is developed for the test statistic based on the random
sample. The statistical significance of the observed statistic for
the actual sample data is evaluated based on this reference distri-
bution. Hall and Wilson (1991) present guidelines for characteris-
tics that should be possessed by bootstrap resamples:

• Even if the data may be drawn from a population that
fails to satisfy H0, the resampling should be done in a
way that reflects H0.

• Extraneous parameters (usually scale parameters)
should be eliminated from the bootstrap hypothesis
test statistic to the extent possible.

To carry out the resampling process in the two-sample case
for the Schenck et al. (2008) data, it is necessary to construct a
sample that reflects H0, at least in an asymptotic sense:

• Fit a two-sample model to the data (e.g., with a one-way
multivariate analysis of variance with two groups) and
calculate standardized residuals {eXi}, {eYj}, where

The {eXi}, {eYi} are approximately independent (0, Σ) as NX,
NY → ∞. We then form a sample of residuals of size NX + NY.
The empirical distribution based on the pooled sample is taken
as an estimate of the population distribution, assuming the null
hypothesis is true.

• Draw a random sample of size NX, with replacement
from the NX + NY e’s, and call them ε*X1,. . .,e*XNx.

• Draw a random sample of size NY, with replacement
from the NX + NY e’s, and call them ε*Y1,. . .,e*YNy.

• Calculate and use these values to

calculate the counterpart to the Hotelling T2 statistic:
2The reference citations refer to Morrison (1976), Multivariate

Statistical Methods, second edition. There is now a fourth edition of
this book available (2002); however, the second-edition citations were
retained to maintain the page references.
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BOOTSTRAP HYPOTHESIS TESTS OF MIXTURE SIMILARITY 497

where  is a pooled estimate of variability between the two
groups. T*2 has the null distribution of Hotelling’s T2 statistic
(asymptotically as NX, NY →∞) irrespective of whether H0
is true.

• Generate B (e.g., B = 1000) resamples {εX*}, {εY*}
from the residuals with replacement, and for each
resample, calculate T*2.

• Form the bootstrap reference distribution of T*2 from
the realizations of the B resamples.

• Compare the observed value of T0
2 (used in the nor-

mal theory test) to this reference distribution.
• The bootstrap significance level equals the number of

T*2 values that exceed T0
2, divided by B.

Note that this approach resamples the residuals {eX}, {eY}
rather than the X’s and Y’s directly, because the resampling
distribution of the X’s and Y’s would not reflect the null distri-
bution if, in fact, the null hypothesis did not hold. In such a
case, both the numerator  and the denominator S*
would be inflated.

Example—Schenck et al. (2009) Study
For the two-sample analysis based on the Schenck et al.

(2008) data, p = 7 and n – (p – 1) = (15 – 2) – (7 – 1) = 7. Thus,
the normal theory Hotelling’s T2 test is based on an F distribution
with 7 numerator and 7 denominator degrees of freedom. The
Hotelling’s T2 test is carried out by performing multivariate
analysis of variance using the GLM procedure within the SAS
System (SAS Institute, Inc., 2004). The results of the SAS
analysis are displayed in Table 1.

The multivariate analysis of variance option within the
GLM procedure reports the results of four test criteria based on
the nonzero characteristic roots of the hypothesis and error
variance covariance matrix “ratio,” HE–1, which generalize the
univariate analysis of variance F statistic. The “Hotelling–
Lawley Trace” is the sum of the characteristic roots. “Roy’s
Largest Root” is the largest of the characteristic roots. “Pillai’s
Trace” is [“Hotelling–Lawley Trace”]/[1 + “Hotelling–Lawley

Trace”].3 “Wilks’s Lambda” is the reciprocal of the product of the
characteristic roots of HE–1 + I (i.e., 1 + characteristic roots of
HE–1).

The number of nonzero characteristic roots is at most the
number of linearly independent contrasts, s, in the hypothesis
space. In the case of the two-sample comparison, s = 1. In this
special case, only one positive characteristic root of HE–1

exists. Let λ (= 0.954 in Table 1) denote the single positive
characteristic root of HE–1. The Hotelling–Lawley Trace and
Roy’s Greatest Root are both equal to λ. Pillai’s Trace is λ/(1 + λ).
Wilks’s Lambda is 1/(1 + λ). The four criteria are equivalent to
one another, as reflected in the common F values and common
significance levels in Table 1. Furthermore, in this case, they
are multiples of and equivalent to the two-sample Hotelling’s
T2 statistic.

Table 1 shows that the value of the F statistic associated
with the observed value of the Hotelling–Lawley trace is 0.95,
which is significant at the .52 level when the normal theory test
is applied. (As just discussed, all four statistics in Table 1 are
equivalent.)

The results of 999 bootstrap resamples are summarized in
Table 2. For each bootstrap resample under the null hypothesis
distribution, the multivariate analysis of variance was run and
the F value associated with the Hotelling–Lawley Trace was
determined. A portion of the listing of the empirical cumula-
tive distribution function is shown in the F value column in
Table 2. The location of the observed F value, 0.95, is shown
in bold. The observed bootstrap significance level, determined
from the Cumulative Frequency column of the table, is 1 –
(508/999) = 1 − .51 = .49. This is in close agreement with the
normal theory significance level, .52, shown in Table 1.

The empirical distribution function of the F values corre-
sponding to the bootstrap resamples is displayed in Figure 1,
along with the normal theory F distribution that is included
for comparison. The empirical bootstrap distribution is

SE
*

X Y
* *

−

TABLE 1 
Hotelling’s T2 Test Statistic for Equality of Finished Water and Distribution Water. One-way normal theory 

multivariate analysis of variance with two groups. Schenck and Sivaganesan (2008) data.

Statistic

F-Statistics for the hypothesis of no overall sample effect

Value F-Value

Numerator 
degree of 
freedom

Denominator 
degree of 
freedom

Significance 
level

Wilks’ Lambda 0.512 0.95 7 7 0.52
Pillai’s Trace 0.488 0.95 7 7 0.52
Hotelling-Lawley Trace 0.954 0.95 7 7 0.52
Roy’s Greatest Root 0.954 0.95 7 7 0.52

3This relation between Pillai’s Trace and the Hotelling–Lawley
Trace is applicable in the special case when there is a single positive
characteristic root.
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498 P. I. FEDER ET AL.

similar to the normal theory F distribution. A reference line is
shown at the F value associated with the observed value of
the statistic, .95 (Table 1). The attained significance levels
(%) are obtained from the vertical axis as 100 minus the

values at which the reference line intersects the cumulative
distribution functions.

MATCHED-PAIRS ANALYSIS

Normal Theory Test
A matched-pairs analysis accounts for treatment-plant effects

as well as an effect for finished water versus distribution water.
Water samples obtained from the same plant are assumed to be
related to one another through a common plant effect. Recall
that the Schenck et al. (2009) data include a single finished
water sample and two distribution water samples for each of
five treatment plants. The assumption is made in this analysis
that the two distribution system samples from the same plant
are replicates, even though they were collected at different
locations. A two-way analysis of variance model is used that
includes “treatment” effects (i.e., finished water versus distri-
bution water) and “block” effects (i.e., treatment plants).

Let Xijk denote the input and output water characteristics of
the water sample. The indices i, j, k have ranges i = 1,. . .,I for
“treatment” effects (I = 2), j = 1,. . .,J for “block” (treatment
plant) effects (J = 5), and k = 1,. . .,Nij for replicates (N1j = 1,
N2j = 2) for all j. It is assumed that

A common covariance matrix is assumed across the treatments
and treatment plants. As discussed earlier for the two-sample
case, the data do not include a sufficient number of replicate
determinations to estimate separate covariances or to detect
departures from the constant covariance assumption.

As discussed in Feder et al. (2009), the five treatment plants
are not considered to be a representative sample from a popula-
tion of treatment plants. Inferences are to be restricted to the
five treatment plants in the data.

The most general two-way analysis of variance model is

subject to the conditions Σiai = Σjbj = Σi(ab)i j = Σj (ab)ij = 0.
The {ai} represent the “treatment” main effects, the {bj} repre-
sent the “block” main effects, and the {(ab)ij} represent the
“treatment” by “block” interactions. The constraints imply that
m represents the average response across water types and treat-
ment plants, mh + ai represents the average response for water
type i averaged across treatment plants, and mh + bj represents
the average response for treatment plant j, averaged across
water types.

The Schenck et al. (2009) data are not sufficient to estimate
and make inferences about the full model and still be able to
estimate the residual covariance. Therefore, an additive main

TABLE 2 
Summary of F-Values Corresponding to B = 999 Bootstrap 

Resamples of the Hotelling’s T2 Test Statistic for Equality of 
Finished Water and Distribution Water. One-way 

nonparametric multivariate analysis of variance. Schenck and 
Sivaganesan (2009) data.

F-Valuea,b Cumulative Frequency Cumulative %

0.86 440 44.04
0.87 445 44.54
0.88 452 45.25
0.89 461 46.15
0.90 476 47.65
0.91 479 47.95
0.92 485 48.55
0.93 495 49.55
0.94 504 50.45
0.95 508 50.85
0.96 511 51.15
0.97 516 51.65
0.98 518 51.85
0.99 527 52.75
1.00 554 55.46
1.01 558 55.86
1.02 559 55.96

aEmpirical distribution of ordered Hotelling-Lawley trace F-values
based on bootstrap resampling iterations under the null hypothesis.

bF-Value of Hotelling-Lawley value based on original data (from
Table 1) = 0.95.

FIG. 1. Empirical CDF and normal theory F-distribution CDF for
Hotelling-Lawley trace F-value for testing no sample effects. Two-sample
analysis. Significance levels (%) are 100 minus the values at which the vertical
reference line crosses the curves. Schenck and Sivaganasen (2009) data.
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BOOTSTRAP HYPOTHESIS TESTS OF MIXTURE SIMILARITY 499

effects submodel was fitted to the Schenck et al. (2009) data by
setting the interactions {(ab)ij} to zero. The main effects model is:

with Σiai = Σjbj = 0. This is a matched-pairs model. The treatment
plants are the “blocks” and the finished water versus distribution
water differences are the “treatment effects,” which are specified
by the model to be consistent across treatment plants.

The hypotheses

and

can be tested based on this model. H0
(α) is the hypothesis of no

“treatment” effects, while H0
(β) is the hypothesis of no “block”

(treatment plant) effects. These hypothesis tests can be carried
out based on normal theory multivariate analysis of variance
tests (Morrison, 1976, p. 177ff).

Nonparametric Bootstrap Test
In analogy with the discussion of the bootstrap procedure

for the two-sample analysis, the matched-pairs bootstrap analy-
sis involves drawing repeated random samples from the empir-
ical distribution of the data under the null hypothesis based on
the residuals from the two-way multivariate analysis fit and
generating null empirical distributions for the test statistics.

To carry out the resampling process in the matched pairs
case, it is necessary to construct a sample that reflects H0, at
least in an asymptotic sense:

• Fit the two-way multivariate analysis of variance model
and calculate the studentized residuals from the fit:

where  denotes the model-predicted value and
diag(stderr ) is a diagonal matrix with diagonal ele-
ments the standard errors of the components of the residual
vector.

• The residual vectors are approximately distributed as
eijk ∼ (0, P) where P is the correlation matrix of the
Xijk’s, as NX, NY → ∞. This distribution is approximate
in small samples.

• For the Schenck et al. (2008) study, there are
NX + NY ≡ N = 15 studentized residuals. Draw a
random sample of size N = 15 with replacement
from the studentized residuals. (There are 1515 such
possible random samples.) Denote these residuals
by e1*, e2*,. . ., e15*. These residuals satisfy the
null hypothesis.

• With each residual, associate each combination of
treatment plant and treatment as follows:

- e1* corresponds to Treatment Plant 1, finished water
- e2*, e3* correspond to Treatment Plant 1, distribution water
- e13* corresponds to Treatment Plant 5, finished water
- e14*, e15* correspond to Treatment Plant 5, distribution

water

• Calculate the F statistics from the multivariate analy-
sis of variance, F*, based on these residuals to test the
hypotheses of homogeneity among treatments and
homogeneity among treatment plants.

• Repeat the resampling process B times (e.g., B = 1000)
and generate a bootstrap empirical distribution function
for F* that is associated with the multivariate analysis
of variance test statistic (e.g., the Hotelling–Lawley
Trace statistic).

• The bootstrap significance level is determined as the
number of F* values that exceed F0, divided by B,
where F0 is the F value associated with the statistic in
the original sample.

Example—Schenck et al. (2009) Study
Test for Equality of Finished Water and Distribution Water

For the two-way matched-pairs analysis of no treatment
effects based on the Schenck et al. (2009) data, p = 7 and
ν – (p – 1) = [15 – (1 + 1 + 4) – (7 – 1)] = 3. Thus, the normal
theory multivariate analysis of variance test of equality of
treatment effects is based on an F distribution with 7 numerator
and 3 denominator degrees of freedom. The test is carried out
by performing multivariate analysis of variance using the GLM
procedure of the SAS System.

The F value associated with the observed value of the
Hotelling-Lawley trace is 1.01 (not shown), which is signifi-
cant at the .55 level. This result agrees with the two-sample
analysis.

The bootstrap resample analysis of the multivariate analysis
of variance test statistic for equality of finished water and dis-
tributed water results in an observed bootstrap significance
level approximately 1 – 0.53 = 0.47. This agrees with the nor-
mal theory significance level, .55, and is in good agreement
with the two-sample analysis.
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Test for Equality of Treatment Plants
For tests of equality among the five treatment plants, the

hypothesis space has four linearly independent contrasts. The
error sums of squares and cross products matrix E is based on
the residuals from the additive main effects submodel dis-
cussed earlier. In this case, the four multivariate analysis of
variance statistics reported by the GLM procedure are based on
different functions of the four positive characteristic roots of
the HE –1 matrix.

Let λ1 ≥ λ2 ≥ λ3 ≥ λ4 > 0 denote the four positive character-
istic roots of HE –1. The Hotelling–Lawley Trace is Σiλi. Roy’s
Greatest Root is λ1. Pillai’s Trace is Σiλi/(1 + λi). Wilks’s
Lambda is 1/Πi(1 + λi). SAS Institute, Inc. (2004), reports that
Roy’s Greatest Root test “provides only a lower bound on the
p-value.” This can result in spuriously significant results. The
other statistics are conservative in that they tend to overesti-
mate the p–value: “the Hotelling-Lawley trace seems to be the
least conservative.” Volume 6 (p. 24) of Kotz and Johnson
(1985) states that for large deviations from the null hypothesis,
when the values of the characteristic roots of HE–1 are far
apart, the Hotelling–Lawley trace statistic is more powerful
than the other statistics.

When the sample sizes are large, the Wilks, Hotelling,
and Pillai criteria are similar to one another. In this and in
subsequent examples, the Hotelling–Lawley Trace statistic
is used for illustrations. The Hotelling–Lawley Trace multi-
variate analysis of variance test of equality of treatment
plant effects is performed using the multivariate analysis of
variance features within the GLM procedure of the SAS
System. In this example its distribution is approximated by
an F distribution with 28 numerator and approximately 3
denominator degrees of freedom. The results of the SAS
analysis are displayed in Table 3. The F value associated
with the observed value of the Hotelling-Lawley trace is
81.45 and is significant at the .004 level.

The results of the 964 bootstrap resamples are summarized
in Table 4. A portion of the listing of the empirical distribution
function is shown in the table, and the closest location to the
value associated with the observed F statistic, 81.45, is shown
in bold. The observed bootstrap significance level is approxi-
mately 1 – .966 = .034. In agreement with the normal theory

test, the treatment plants are significantly different. However
the bootstrap significance level is an order of magnitude larger
than the normal theory significance level, .034 vs. .004.

The differences among the treatment plants are clearly dis-
played in the principal components plots, Figure 4 in Feder
et al. (2009). In that plot the treatment plants are separated
from one another but the finished water samples and the distri-
bution water samples from the same treatment plant are clus-
tered together.

The empirical distribution function of the F statistic corre-
sponding to the bootstrap resamples is displayed in Figure 2,
along with the normal theory F distribution that is included for
comparison. A reference line is shown at the F value associ-
ated with the observed value of the statistic (81.45), and the
attained significance levels (%) are read from the vertical axis
as 100 minus the values at which the reference line intersects
the distribution functions. The bootstrap empirical cdf for the
statistic lies below the normal theory cdf. This implies that the
bootstrap empirical distribution of the F statistic has a heavier
tail than the normal theory-based F distribution. This could
potentially result in stating significance with the normal
theory-based test but non-significance with the nonparametric
bootstrap test. This was suggested in the present example,
where the normal theory significance level (.004) indicates an
order of magnitude more extreme level of significance com-
pared to the bootstrap nonparametric significance level (.034).

FOUR-WAY ANALYSIS OF VARIANCE—U.S. 
ENVIRONMENTAL PROTECTION AGENCY AND 
ASSOCIATION OF METROPOLITAN WATER DISTRICTS 
35-UTILITIES STUDY

Example—35-Utilities Study Data
The 35-utilities study data (U.S. EPA/AMWA, 1989) are

more extensive than the Schenck et al. (2009) data (Bull et al.,
2009b). The 35 utilities were sampled within relatively short
time spans during four consecutive seasons. There were three
different water sources: groundwater, lake reservoir, and flow-
ing stream. Two disinfection processes were utilized: free chlo-
rine and chloramination. All but three of the utilities had the

TABLE 3 
Multivariate Analysis of Variance Test Statistic for Equality of Treatment Plants. Two-way matched pairs 

normal theory multivariate analysis of variance. Schenck and Sivaganesan (2009) data.

Statistic Value F-Value

Numerator 
degree of 
freedom

Denominator 
degree of 
freedom Pr > F

Wilks’ Lambda 0 18.56 28 12.239 <0.0001
Pillai’s Trace 3.29 3.98 28 24 0.0005
Hotelling-Lawley Trace 506.82 81.45 28 2.5714 0.0042
Roy’s Greatest Root 372.35 319.16 7 6 <0.0001
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same water source and used the same disinfection process for
all four seasons. The other three differed in a single season. If,
in one season, a utility altered its source or treatment process, it
was treated for that season as if it was a different utility.

Based on the discussion in Bull et al. (2008a, 2008b), six
DBP classes were measured for each season in each utility:
trihalomethanes, haloacetic acid, haloacetonitriles, haloke-
tones, trihaloacetaldehyde, and trichloropicrin. The data set
also includes measurements of the characteristics of the
intake water. Of particular interest are TOC and bromide
level in the raw water.

The relationships between the disinfection by-products and
potential health effects provide the basis for the selection of

water characteristics for statistical comparisons to assess simi-
larity among water supplies. The treated water chemical com-
position was summarized in an 11-dimensional vector. The
components of the summary are molar concentrations (nmol/L)
within the following 10 classes (as well as percent bromination
within the total trihalomethane class):

1. Total trihalomethane.
2. Trihaloacetic acid.
3. Dihaloacetic acid.
4. Monohaloacetic acid.
5. Trihaloactonitriles.
6. Dihaloactonitriles.
7. Trihaloketones.
8. Dihaloketones.
9. Trihaloacetaldehyde.

10. Trihalopicrin.
11. Percent bromination within the total trihalomethane class

(i.e., nmol/L bromine/total nmol/L).

Normal Theory Test
Statistical inferences were carried out in a manner directly

analogous to those in the previous examples.
Let Xhijk denote the summary vector of water characteris-

tics of the water sample, where the subscripts denote the
following:

It is assumed that

The model assumes a common 11 × 11 covariance Σ across the
conditions. The chemical composition vector Xhijk is repre-
sented as

where

subject to the conditions Σhah = Σibi = Σjgj = 0; Σk(h,i)Uk(h,i) = 0
for all h,i. This is a four-way additive analysis of variance
model. In this model the utilities are treated as fixed effects.
That is, they are not considered to be a random sample from a

TABLE 4 
Summary of F-Values Corresponding to B = 964 Bootstrap 
Resamples of the Multivariate Analysis of Variance Test 

Statistic for Equality of Treatment Plants. Two-way matched 
pairs nonparametric multivariate analysis of variance. Schenck 

and Sivaganesan (2009) data.

F-Valuea,b Cumulative frequency Cumulative %

75.34 930 96.47
80.74 931 96.58
83.29 932 96.68
90.79 933 96.78

aEmpirical distribution of ordered Hotelling-Lawley trace F-values
based on bootstrap resampling iterations under the null hypothesis

bF-Value of Hotelling-Lawley trace based on original data (from
Table 3) = 81.45

FIG. 2. Empirical CDF and normal theory F-distribution CDF for
Hotelling-Lawley trace F-value for testing hypothesis of no plant treatment
effects. Two-way matched pairs analysis. Significance levels (%) are 100
minus the values at which the vertical reference line crosses the curve. Schenck
and Sivaganesan (2009) data.
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larger population of utilities and inferences are to be made
about the specific 35 utilities included in the data.

The constraints imply that m0 represents the average response
across treatments, water sources, seasons, and utilities; m0 + ah
represents the average response for treatment type h averaged
across water sources, seasons, and utilities; and m0 + bi repre-
sents the average response for water source i averaged across
treatments, seasons, and utilities; m0 + gj represents the average
response for season j averaged across treatments, sources, and
utilities; and m0 + Uk(h,i) represents the average response for
utility k(h,i) averaged across seasons.

An additive model is adopted for relative simplicity of illus-
tration. Additivity implies that the effect of treatment is the
same for all water sources and seasons, etc. Extensions of the
model are considered in the discussion section later.

The following hypotheses can be tested based on the four-
way multivariate analysis of variance model.

• No treatment effects:

• No water source effects:

• No season effects:

• No utility (treatment, water source) effects:

The error sums of squares and cross-products matrix is based on
the residuals from the additive model, which corresponds to the
pooled two-, three-, and four-way interaction effects.

Nonparametric Bootstrap Test
The bootstrap analysis is based on the studentized residuals

from the analysis of variance fit, in direct analogy with the pro-
cedure discussed for the matched-pairs analysis.

• Fit the full four-way additive multivariate analysis of
variance model and calculate the studentized residuals
from the fit:

where  denotes the model-predicted value and

 is a diagonal matrix with diagonal
elements the standard errors of the components of the residual
vector.

• For the 35-utilities data, there is a potential maximum
of N = 35 × 4 = 140 studentized residuals. However,
due to missing concentration values, only 108 studen-
tized residual vectors were used in the analysis. Draw a
random sample of size N = 140 with replacement from
the studentized residuals. (There are 108140 such possi-
ble random samples.) Denote these residuals by ε1*,
ε2*,. . .,εN*. These residuals satisfy the null hypothesis.

• Proceed in analogy to the matched-pairs analysis
bootstrap test.

Example—35-Utility Study
The normal theory multivariate analysis of variance tests were

carried out by performing multivariate analysis of variance using
the GLM procedure of the SAS System (SAS Institute, Inc.,
2004). Results are displayed for the following tests of hypothesis:

• Equality of water sources.
• Equality of seasons.
• Equality of treatments.
• Equality of utilities within treatments and sources

(averaged over seasons).

These are summarized in Table 5.
The results of the bootstrap resamples of the F values associ-

ated with the Hotelling–Lawley trace statistic are summarized in
Table 6. Portions of each of the listings of the empirical distribu-
tion functions are shown in the table. The observed normal
theory F0 values are included in the table for reference.

In each case, the normal theory tests indicate highly statisti-
cally significant differences. Each observed F statistic F0 lies
far out in the upper tail of the bootstrap empirical distribution.
The normal theory test and the bootstrap test are in agreement.

DISCUSSION
This article extends the discussion in Feder et al. (2009) in

two ways:

1. The statistical inference procedures in Feder et al. (2009)
were based on normal theory multivariate analysis of
variance. This article discusses nonparametric alterna-
tives based on the “bootstrap” resampling technique.

2. The statistical analysis procedures in Feder et al.
(2009) were illustrated with monitoring data from five
water treatment plants. In addition to these data, the
statistical analysis procedures in this article are illus-
trated with a data set based on waters from 35 utilities,
which permits inclusion of a greater number of water
constituents and greater structure in the models.
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In this article, the bootstrap discussion is restricted to
hypothesis testing applications in multivariate analysis of
variance. The intent is to illustrate that the bootstrap resam-
pling approach can be applied to comparisons of DBP
among water supplies as alternatives to the standard multi-
variate normal theory procedures.

The bootstrap procedure can be extended to inferences
beyond those discussed in this article. For example when com-
paring the chemical composition of finished water with that of

distribution water in the Schenck et al. (2009) data, it was
assumed that the covariance structure is the same for both of
these groups. The bootstrap procedure can be used to develop
robust tests for equality of variances (if sufficient data exist).
Bootstrap procedures can also be applied to (1) inferences
about principal components, (2) comparisons of average chem-
ical composition of water supplies in the presence of heteroge-
neous covariance structure, and (3) robust outlier detection
procedures.

The bootstrap procedure can be extended to construct
univariate or multivariate confidence regions. This is a direct
generalization of hypothesis testing in that the confidence
region consists of the set of parameter values that would not be
rejected by the associated hypothesis test. Thus, conducting a
succession of bootstrap hypothesis tests with varying null
hypotheses results in specifying a confidence region

This article develops and illustrates statistical methodology
for assessing the similarity of alternative water supplies. Sev-
eral of the statistical assumptions were made for the purpose of
illustrating statistical procedures. If the methods are to be used
for a rigorous risk assessment, sensitivity analyses should be
conducted to assess the effects on inference results of variation
in the assumptions. For example in the comparison of the treat-
ment plant effects with the Schenck et al. (2009) data, the non-
parametric bootstrap significance level was an order of
magnitude larger than that of the parametric normal theory test.
Thus in this inference results may be sensitive to the normality
assumption. If the extent of the data permits, other model
assumptions such as constant covariance or additive effects can
be evaluated to determine their impact on analysis results. Pro-
visions for the critical evaluation of modeling assumptions
might be incorporated into the design of future treatment plant
monitoring studies.

In the analysis of the 35-utilities study the utilities were
treated as fixed effects, with inferences restricted to the spe-
cific 35 utilities that were included in the study. As an exten-
sion of the analyses considered in this article, additional
analyses might be carried out treating the utilities as random
effects, i.e., as a randomly selected sample from a larger

TABLE 5 
Hotelling-Lawley Trace Multivariate Analysis of Variance Test Statistics for Equality of Sources, Equality of 

Seasons, Equality of Treatments, and Equality of Utilities. Four-way normal theory multivariate analysis of variance. 
35-Utilities data (1989).

Test
Hotelling-Lawley 

Trace value
Associated 

F-value
Degrees of 

freedom of test
Significance 

level

H0: No overall water source effect 2.88 7.36 (22, 93.7) <0.0001

H0: no overall season effect 1.57 2.67 (33, 124.8) <0.0001

H0: no overall treatment effect 1.18 6.11 (11, 57) <0.0001

H0: no overall utility effect 47.49 7.06 (374, 388.0) <0.0001

TABLE 6 
Summary of F-Values Corresponding to B = 1,000 Bootstrap 

Resamples of the Multivariate Analysis of Variance Test 
Statistic for Equality of Sources, Equality of Periods, Equality 

of Treatments, and Equality of Utilities. Four-way normal 
theory multivariate analysis of variance. 35-Utilities data 

(1989).

F-Value Cumulative frequency Cumulative %

H0: no overall water source effect: F0 = 7.36a

3.95 997 99.7
3.99 998 99.8
4.12 999 99.9
4.38 1,000 100

H0: no overall season effect: F0 = 2.67a

2.25 999 99.9
2.26 1,000 100

H0: no overall treatment effect: F0 = 6.11a

5.13 998 99.8
5.19 999 99.9

H0: no overall utility effect: F0 = 7.06a

2.09 998 99.8
2.13 999 99.9
2.21 1,000 100

aF0 corresponds to the normal theory Hotelling-Lawley trace
F-statistic value, shown in Table 5.
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504 P. I. FEDER ET AL.

population of utilities. Inferences would apply to the larger
population of utilities.

From an operational consideration in carrying out the
analysis of variance tests, the principal difference between the
random effects analysis tests and the fixed effects analysis tests
discussed in this article is the choice of the appropriate sums of
error sums of squares and cross-products matrix E. In a fixed
effects analysis the error matrix is the residual matrix from the
additive model. This aggregates all the two-factor and higher
order interactions. In a random effects analysis the error matrix
is based on interactions between the effect under consideration
and the utilities in the sample. Interaction effects need to be
added to the model. In the case of completely balanced data the
appropriate error sums of squares and cross-product error
matrix with which to test an effect is the two-factor interaction
effect matrix between that effect and the utilities. In the case of
unbalanced data the appropriate error sums of squares and
cross-product error matrix is an appropriate linear combination
of interaction matrices, depending on the design and the degree
of imbalance. The construction of such tests in the multivariate
situations is nonstandard and is not a readily available analysis
in most statistical packages.
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